Antisense and RNAi expression for a chloroplastic superoxide dismutase gene in transgenic plants

نویسندگان

  • Shu-Yan CHEN
  • Sa XIAO
  • Man-Xiao ZHANG
  • Tuo CHEN
  • Hui-Chun WANG
چکیده

The cDNA of tomato chloroplastic Cu/Zn-superoxide dismutase was used to construct transgenic tobacco (Nicotiana plumbaginifolia). It was found that the gene expression of Cu/Zn-superoxide dismutase can constitutively be reduced in the transgenic tobacco plants because of double-stranded (dsRNA) expressed in the form of intronspliced hairpin structures and antisense suppression. Furthermore, the endogenous chloroplastic Cu/Zn-superoxide dismutase gene in tobacco was established as a target for silencing due to the operation of hpRNA and antisense RNA constructs. However, under salt and PEG-induced stress, the cytosolic Cu/Zn-superoxide dismutase activity in transformed plants obviously increased. At the same time, the PEG pretreatment was able to promote tolerance of the transgenic plants to the salt stress. These results indicated that the use of hpRNA and anti-sense was able to successfully knockout the transcript encoding a chloroplast superoxidase dismutase. The null transformed plants grown under stress produced or retained other superoxide dismutase to compensate for the loss of the chloroplast. Consequently, hpRNA constructs would be helpful in discovering and validating the endogenous chloroplastic Cu/Zn-superoxide dismutase gene, and to prove the cytosolic alternative pathway of plant antioxidation associated with the function of Cu/Zn-superoxide dismutase gene under an unfavorable environment. Meanwhile, the experiment will provide an important technique for the antisensing strategies operating in tobacco.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco.

Transgenic tobacco (Nicotiana tabacum cultivar W38) plants that overproduce petunia chloroplastic Cu/Zn superoxide dismutase were exposed to ozone dosages that injure control tobacco plants. Based on foliar injury ratings, there was no consistent protection provided to the transgenic plants. These data indicate that an increase in the chloroplastic Cu/Zn superoxide dismutase alone is not suffic...

متن کامل

Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.

A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against...

متن کامل

Transformation of Rapeseed (Brassica napus L.) Plants with Sense and Antisense Constructs of the Fatty Acid Elongase Gene

The biosynthetic pathways of saturated and unsaturated fatty acids consist of many steps controlled by various enzymes. One of the methods for improving oil quality is to change the fatty acid profile through genetic manipulation which requires isolation and characterization of the genes and other cis-acting elements, such as the promoter, involved in fatty acid biosynthesis. b-ketoacyl-CoA syn...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata.

Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005